

Instruction for Use

diarellaSTI-1 real time PCR Kit

For *in vitro* detection of the DNA of Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium extracted from biological specimens.

RUO

Index

1	Inten	Intended Purpose					
2	Patho	Pathogen Information					
3	Princi	Principle of the Test					
4	Packa	age Contents					
5	Equip	ment and Reagents to be Supplied by User4					
6	Trans	port, Storage and Stability4					
7	Warn	ings and Precautions5					
8	Samp	le Material6					
9	Samp	le Preparation6					
10	Contr	rol DNA					
11	Real t	time PCR					
1	1.1	Important Points Before Starting: 6					
1	1.2	Procedure7					
1	1.3	Instrument Settings					
12	Data	Analysis10					
13	Assay	vValidation11					
14	Limita	ations of the Method11					
15	Trout	pleshooting12					
16	Kit Pe	erformance					
1	6.1	Analytical Sensitivity13					
1	6.2	Analytical Specificity13					
1	6.3	Linear Range					
1	6.4	Precision					
17	Abbre	eviations and Symbols20					
18	Literature						

1 Intended Purpose

The Kit is designed for the qualitative detection of the nucleic acid of Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium in eluates from biological specimens.

For research use only. Not for use in diagnostic procedures.

2 Pathogen Information

Chlamydia trachomatis are gram-negative bacteria which can only replicate in host cells. C. trachomatis are grouped in different serovars with the serovars A - C including ocular strains, serovars D - K gential strains and L1 – L3 strains that causes lymphogranuloma venereum. While most infections with C. trachomatis are asymptomatic, it can still lead to symptoms like pelvic inflammatory disease [1].

Neisseria gonorrhoeae are gram-negative diplococci bacteria. They cause the genitourinary infection gonorrhea and may infect throat and eyes. Untreated, the infection may cause pelvic inflammatory disease in women along with possible infertility or may spread to the rest of the body and lead to a disseminated gonorrhea infection [2].

Mycoplasma genitalium are small pathogenic bacteria, living in the human urinary and genital tracts. They are known to cause negative health effects in men and women and are suspected to increase the risk for an HIV infection [3].

3 Principle of the Test

The diarellaSTI-1 real time PCR Kit contains specific primers and dual-labeled probes for the amplification of the DNA of Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium extracted from biological specimens.

The presence of nucleic acid is detected by an increase in fluorescence due to hydrolysis of the probes during amplification. The fluorescence of the Chlamydia trachomatis specific probes is measured in the FAM channel. The fluorescence of the Mycoplasma genitalium specific probes is measured in the ROX channel. The fluorescence of the Neisseria gonorrhoeae specific probes is measured in the Cy5 channel.

Furthermore, diarellaSTI-1 real time PCR Kit contains a Control DNA (Internal Process Control, IPC), which is added during DNA extraction and detected in the same reaction by a HEX-labeled probe.

The Control DNA allows the detection of PCR inhibition and acts as control, that the nucleic acid was isolated from the biological specimen.

4 Package Contents

The reagents supplied are sufficient for 96 reactions.

Table 1: Components of the diarellaSTI-1 real time PCR Kit
--

Label	Lid Colour	Content 96
Reaction Mix	yellow	1 x 1344 μl
Positive Control	red	1 x 150 μl
Negative Control	green	1 x 150 μl
Control DNA	colourless	1 x 480 μl

5 Equipment and Reagents to be Supplied by User

- DNA isolation kit (e.g. NukEx Mag RNA/DNA, gerbion Cat. No. G05012)
- PCR grade Water
- Sterile microtubes
- Pipets (adjustable volume)
- Sterile pipet tips with filter
- Table centrifuge
- Vortexer
- Real time PCR instrument
- Optical PCR reaction tubes with lid or optical PCR reaction plate with optical foil
- Optional: Liquid handling system for automation

6 Transport, Storage and Stability

The diarellaSTI-1 real time PCR Kit is shipped on dry ice. All components must be stored at maximum -18°C in the dark immediately after receipt. Do not use reagents after the date of expiry printed on the package. Up to 20 freeze and thaw cycles are possible.

Protect kit components from direct sunlight during the complete test run.

7 Warnings and Precautions

Read the Instructions for Use carefully before using the product. Before first use check the product and its components for:

- Use of this product is limited to personnel specially instructed and trained in the techniques of real time PCR procedures.
- Specimens should always be treated as infectious and/or biohazardous in accordance with safe laboratory procedures.
- Avoid microbial and nuclease (DNase/RNase) contamination of the eluates and the components of the kit.
- Always use DNase/RNase-free disposable pipette tips with aerosol barriers.
- Always wear protective disposable powder-free gloves when handling kit components.
- Use separated and segregated working areas for (1) sample preparation,
 (2) reaction setup and (3) amplification/detection activities. The workflow in the laboratory should proceed in unidirectional manner. Always wear disposable gloves in each area and change them before entering a different area.
- Dedicate supplies and equipment to the separate working areas and do not move them from one area to another.
- Store positive and/or potentially positive material separated from all other components of the kit.
- Do not open the reaction tubes/plates post amplification to avoid contamination with amplicons.
- Additional controls may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organizations.
- Do not autoclave reaction tubes after the PCR, since this will not degrade the amplified nucleic acid and will bear the risk to contaminate the laboratory area.
- Discard sample and assay waste according to your local safety regulations.
- Do not mix components from different lots

8 Sample Material

Starting material for diarellaSTI-1 real time PCR is DNA isolated from biological specimens. By the nature of the pathogens, sample material like vaginal swabs or urine are commonly used.

9 Sample Preparation

Commercial kits for DNA isolation such as the following are recommended:

• NukEx Mag RNA/DNA, gerbion Cat. No. G05012

Please follow the instructions for use of the respective extraction kit.

Important:

In addition to the samples always run a ,water control' in your extraction. Treat this water control analogous to a sample.

Comparing the amplification of the Control DNA in the samples to the amplification of the internal control in the water control will give insights on possible inhibitions of the real time PCR. Furthermore, possible contaminations during DNA extraction will be detectable.

Please note the chapter ,Control DNA'.

If the real time PCR is not performed immediately, store extracted DNA according to the instructions given by the manufacturer.

10 Control DNA

A Control DNA is supplied as extraction control. This allows the user to control the DNA isolation procedure and to check for possible real time PCR inhibition.

Add 5 μ l Control DNA per extraction (5 μ l x (N+1)). Mix well. Perform the DNA isolation according to the manufacturer's instructions.

The Control DNA must be added to the Lysis Buffer of the extraction kit.

11 Real time PCR

11.1 Important Points Before Starting:

- Please pay attention to the chapter 7 ,Warnings and Precautions'.
- Before setting up the real time PCR familiarise yourself with the real time PCR instrument and read the user manual supplied with the instrument.
- The programming of the thermal profile should take place before the PCR set up.

- In every PCR run one Positive Control and one Negative Control should be included.
- Before each use, all reagents should be thawed completely at room temperature, thoroughly mixed, and centrifuged very briefly.

11.2 Procedure

The Master Mix contains all of the components needed for PCR except the sample. Prepare a volume of Master Mix for at least one sample more than required, in order to compensate for pipetting inaccuracy.

Table 2: Preparation of the Master Mix

Volume per Reaction	Volume Master Mix
14.0 μl Reaction Mix	14.0 μl x (N+1)

Real time PCR set-up

- Place the number of optical PCR reaction tubes needed into the respective tray of the real time PCR instrument / take an optical PCR reaction plate.
- Pipet $14\;\mu l$ of the Master Mix into each optical PCR reaction tube / the optical PCR reaction plate.
- Add 6 µl of the eluates from the DNA isolation (including the eluate of the water control), the Positive Control and the Negative Control to the corresponding optical PCR reaction tube / the optical PCR reaction plate (Table 3).
- Close the optical PCR reaction tubes / the optical PCR reaction plate immediately after filling in order to reduce the risk of contamination.

Table 3: Preparation of the real time PCR

Component	Volume	
Master Mix	14.0 µl	
Sample	6.0 µl	
Total Volume	20.0 µl	

11.3 Instrument Settings

For the real time PCR use one of the thermal profiles shown in Table 4 and Table 5.

Description		Time	Temperature	Number of Cycles	
Initial Denaturatio	n	5 min	95°C	1	
Amplification of DI	VA				
Denaturation		10 sec	95°C		
Annealing and		40 sec	60°C	45	
Extension					
Acquisition at the end of this step					

Table 4: real time PCR thermal profile

If in the same run samples should be tested for pathogens with RNA genome, use the thermal profile shown in Table 5.

Table 5: real time RT-PCR thermal profile

Description		Time	Temperature	Number of Cycles
Reverse Transcription		10 min	45°C	1
Initial Denaturation	1	5 min	95°C	1
Amplification of DN	A			
Denaturation Annealing and		10 sec	95°C	
		40 sec	60°C	45
Extension				
		Acquisition	at the end of this step	

Dependent on the real time instrument used, further instrument settings have to be adjusted according to Table 6.

Real time PCR Instrument	Parameter	Detection Channel	Notes		
			Color Compensation Kit Multiplex 1 (G070MP1-CC) required		
			Melt Factor	Quant Factor	Max Integration Time (sec)
LightCycler 480II	C. trachomatis	465-510	1	10	1
	Control DNA (IPC)	533-580	1	10	2
	M. genitalium	533-610	1	10	2
	N. gonorrhoeae	618-660	1	10	3
	C. trachomatis	FAM	Gain 8	Reference Dye: None	
Stratagene Mx3000P /	Control DNA (IPC)	HEX	Gain 1		
Mx3005P	M. genitalium	ROX	Gain 1		
	N. gonorrhoeae	Cy5	Gain 4		
QuantStudio 5	C. trachomatis	FAM			
CFX96	Control DNA (IPC)	HEX	Option Reference Dye ROX: N		DOV: NO
CFX Opus 96 Aria Mx	M. genitalium	ROX			RUX: NU
qTower ³ G	N. gonorrhoeae	Cy5			
	C. trachomatis	Green	Gain 8		
Mic gPCR Cycler	Control DNA (IPC)	Yellow	Gain 10		
IVIIC GPCK Cycler	M. genitalium	Orange	Gain 10		
	N. gonorrhoeae	Red	Gain 10		

Table 6: Overview of the instrument settings required for the diarellaSTI-1 real time PCR.

12 Data Analysis

Following results can occur:

Signal/C _T Va	alues			
FAM Channel Chlamydia trachomatis	Cy5 Channel Neisseria gonorrhoeae	ROX Channel Mycoplasma genitalium	HEX Channel IPC	Interpretation
positive ¹	negative	positive Positive		Positive result, the sample contains <i>Chlamydia trachomatis</i> DNA.
negative	positive ¹	negative	positive or negative ²	Positive result, the sample contains Neisseria gonorrhoeae DNA.
negative	negative	positive ¹	positive or negative ²	Positive result, the sample contains Mycoplasma genitalium DNA.
negative	negative	negative	≤ 34 ³	Negative result, the sample contains no <i>Chlamydia</i> <i>trachomatis, Neisseria</i> <i>gonorrhoeae or Mycoplasma</i> <i>genitalium</i> DNA.
negative	negative	negative	negative or > 34 ³	No diagnostic statement can be made. The real time PCR is either inhibited or errors occurred while DNA extraction.

¹ Positive signals in multiple channels can occur. In this case, multiple targets are detected.

 $^{\rm 2}$ A strong positive signal in the FAM, ROX or the Cy5 can inhibit the IPC. In such cases the result for the Control DNA can be neglected.

 3 In case of high C_{τ} values, the IPC should be compared to the water extraction control as described in the chapter 'Assay validation'.

13 Assay Validation

Negative Controls

The Negative Control must show no $C_{\rm T}$ in the FAM, Cy5, ROX and HEX channel.

Positive Controls

The Positive Control must show a positive (i.e. exponential) amplification curve in the different channels FAM, Cy5 and ROX. The Positive Control must fall below C_T 30.

Internal Controls

The following values for the amplification of the internal controls are valid using gerbion nucleic acid extraction kit NukEx Mag RNA/DNA. The Control DNA (IPC) must show a positive (i.e. exponential) amplification curve.

The IPC must fall below a C_T of 34. If the IPC is above C_T 34 this points to a purification problem or a strong positive sample that can inhibit the IPC. In the latter case, the assay is valid. It is recommended to perform the extraction of a water control in each run. The IPC in the water control must fall below a C_T of 34.

If other nucleic acid extraction kits are used, the customer must define own cutoffs. In this case the C_T value of the Control DNA (IPC) in an eluate from a sample should not be delayed for more than 4 C_T in comparison to an eluate from an extracted water control.

14 Limitations of the Method

- Strict compliance with the Instruction for Use is required for optimal results.
- Use of this product is limited to personnel specially instructed and trained in the techniques of real time PCR and in vitro diagnostic procedures.
- Good laboratory practice is essential for proper performance of this assay.
- All reagents should be closely monitored for impurity and contamination. Any suspicious reagents should be discarded.
- This assay must not be used on a biological specimen directly. Appropriate nucleic acid extraction methods must be conducted prior to using this assay.
- The presence of PCR inhibitors may cause false negative or invalid results.

15 Troubleshooting

The following troubleshooting guide is included to help you with possible problems that may arise when performing a real time PCR. If you have further questions, please do not hesitate to contact our scientists on info@gerbion.com.

No fluorescence signal in the F	AM, Cy5, ROX channel of the Positive Control
The selected channel for analysis does not comply with the protocol	Select the FAM channel for analysis of the <i>C. trachomatis</i> specific amplification, the Cy5 channel for the N. gonorrhoeae specific amplification, the ROX channel for the amplification of the M. genitalium and the HEX channel for the amplification of the Control DNA (IPC).
Incorrect configuration of the real time PCR	Check your work steps and compare with chapter 'Procedure'.
The programming of the thermal profile is incorrect	Compare the thermal profile with the protocol in chapter 'Instrument Settings'.
Incorrect storage conditions for one or more kit components or kit expired	Check the storage conditions and the date of expiry printed on the kit label. If necessary, use a new kit and make sure kit components are stored as described in 'Transport, Storage and Stability'.
Weak or no signal of the Contr bacteria specific FAM and/or C	ol DNA (IPC) and simultaneous absence of a signal in the y5 and/or ROX channel.
real time PCR conditions do not comply with the protocol	Check the real time PCR conditions (chapter 'Real time PCR').
real time PCR inhibited	Make sure that you use an appropriate isolation method (see chapter 'Sample Preparation') and follow the manufacturer's instructions. Make sure that the ethanol- containing washing buffers have been completely removed.
sample material not sufficient	Make sure that enough sample material has been applied to the extraction. Use an appropriate isolation method (see chapter 'Sample Preparation') and follow the manufacturer's instructions.
DNA loss during isolation process	In case the Control DNA was added before extraction, the lack of an amplification signal can indicate that the DNA isolation was not successful. Make sure that you use an appropriate isolation method (commercial kits are recommended) and stick to the manufacturer's protocol.
Incorrect storage conditions for one or more components or kit expired	Check the storage conditions and the date of expiry printed on the kit label. If necessary, use a new kit and make sure kit components are stored as described in 'Transport, Storage and Stability'.

Detection of a fluorescence signal in the FAM and/or Cy5 and/or ROX channel of the Negative Control						
Contamination during preparation of the PCR	Repeat the real time PCR in replicates. If the result is negative in the repetition, the contamination occured when the samples were pipetted into the optical PCR reaction tubes. Make sure to pipet the Positive Control last and close the optical PCR reaction tube immediately after adding the sample. If the same result occurs, one or more of the kit components might be contaminated. Make sure that work space and instruments are decontaminated regularly. Use a new kit and repeat the real time PCR.					

16 Kit Performance

16.1 Analytical Sensitivity

For the FAM, ROX and Cy5 channels, the limits of detection (LoD) of diarellaSTI-1 real time PCR Kit were determined using serial dilutions of the of synthetic DNA-fragments containing the specific gene target sequence. The determination of the LoD was done on a CFX Opus 96 Instrument (Bio-Rad).

The LoD of diarellaSTI-1 real time PCR Kit is \leq 0.25 genome copies per μl for the FAM, Cy5 and ROX channel.

16.2 Analytical Specificity

The specificity of the diarellaSTI-1 real time PCR was evaluated with different ring trial samples of known status and different other relevant viruses and bacteria found in biological samples and basing on in silico analyses. Additionally, 324 qualified field samples were tested with the diarellaSTI-1 real time PCR.

All ring trial samples and other eluates with known status were detected correctly. Results are shown in tables 7 - 10.

The results for the field samples are summarized for each target in tables 11 - 13.

sample	C. trachomatis	N. gonorrhoeae	M. genitalium				
	FAM channel	Cy5 channel	ROX channel				
QCMD 2020 Sexually Transmitted Infections I							
STI_I101S-01 Trichomonas vaginalis *	negative	negative	negative				
STI_I101S-02 Mycoplasma hominis	negative	negative	negative				
STI_I101S-03 G. vaginalis + T. vaginalis *	negative	negative	negative				
STI_I101S-04 M. genitalium (drug resistant)	negative	negative	positive				
STI_I101S-05 M. genitalium (wilt type)	negative	negative	positive				
STI_I101S-06 negative	negative	negative	negative				
STI_I101S-07 Gardnerella vaginalis *	negative	negative	negative				
STI_I101S-08 Trichomonas vaginalis	negative	negative	negative				
STI_I101S-09 M. hominis + C. trachomatis *	positive	negative	negative				
STI_I101S-10 Trichomonas vaginalis	negative	negative	negative				
QCMD 2020 Sexual	y Transmitted In	ections II					
STI_II101S-01 Herpes simplex virus 2	negative	negative	negative				
STI_II101S-02 Treponema pallidum *	negative	negative	negative				
STI_II101S-03 Herpes simplex virus 1	negative	negative	negative				
STI_II101S-04 C. trachomatis + M. hominis	positive	negative	negative				
STI_II101S-05 Neisseria gonorrhoeae	negative	positive	negative				
STI_II101S-06 C. trachomatis + N. gonorrhoeae +M. hominis *	positive	positive	negative				
STI_II101S-07 C. trachomatis + M. hominis	positive	negative	negative				
STI_II101S-08 Neisseria gonorrhoeae	negative	positive	negative				
STI_II101S-09 Chlamydia trachomatis	positive	negative	negative				
STI_II101S-10 Neisseria gonorrhoeae	negative	positive	negative				

Table 7: Ring trial samples tested for the validation of the sensitivity and specificity of the diarellaSTI-1 real time PCR Kit.

* Educational sample, very low amount of target copies

sample	C. trachomatis	N. gonorrhoeae	M. genitalium
Sample	FAM channel	Cy5 channel	ROX channel
QCMD 2020 Chla	mydia trachomat	is DNA	
CTDNA101S-01 C. trachomatis (LGV)	positive	negative	negative
CTDNA101S-02 negative	negative	negative	negative
CTDNA101S-03 C. trachomatis (LGV)	positive	negative	negative
CTDNA101S-04 C. trachomatis (LGV)	positive	negative	negative
CTDNA101S-05 C. trachomatis (LGV)	positive	negative	negative
CTDNA101S-06 C. trachomatis (LGV)	positive	negative	negative
CTDNA101S-07 C. trachomatis (Genovar F)	positive	negative	negative
CTDNA101S-08 C. trachomatis (LGV)	positive	negative	negative
CTDNA101S-09 Negative	negative	negative	negative
CTDNA101S-10 C. trachomatis (LGV) +	positive	positive	negative
N. gonorrhoeae (St 49226)			
QCMD 2020 Chlamydia trachon	natis and Neisser	ia gonorrhoeae D	NA
CTNg101S-01 C. trachomatis (LGV)	positive	negative	negative
CTNg101S-02 Negative	negative	negative	negative
CTNg101S-03 C. trachomatis (LGV)	positive	negative	negative
CTNg101S-04 C. trachomatis (Genovar F)	positive	negative	negative
CTNg101S-05 N. gonorrhoeae (St 49226)	negative	positive	negative
CTNg101S-06 C. trachomatis (LGV)	positive	negative	negative
CTNg101S-07 N. gonorrhoeae (St 49226)	negative	positive	negative
CTNg101S-08 Negative	negative	negative	negative
CTNg101S-09 N. gonorrhoeae (St 49226)	negative	positive	negative
CTNg101S-10 N. gonorrhoeae (St 49226) + C. trachomatis (LGV)	positive	positive	negative

Table 8: Ring trial samples tested for the validation of the sensitivity and specificity of the diarellaSTI-1 real time PCR Kit.

Table 9: Ring trial samples tested for the validation of the sensitivity and specificity of the diarellaSTI-1 real time PCR Kit.

sample	C. trachomatis	N. gonorrhoeae	M. genitalium		
	FAM channel	Cy5 channel	ROX channel		
QCMD 2020 Nei	QCMD 2020 Neisseria gonorrhoeae DNA				
NgDNA101S-01 N. gonorrhoeae (LvINg PorA)	negative	positive	negative		
NgDNA101S-02 N. gonorrhoeae (St 49226)	negative	positive	negative		
NgDNA101S-03 N. gonorrhoeae (St 49226)	negative	positive	negative		
NgDNA101S-04 Negative	negative	negative	negative		
NgDNA101S-05 N. gonorrhoeae (St 49226)	negative	positive	negative		
NgDNA101S-06 N. gonorrhoeae (St 49226)	negative	positive	negative		
NgDNA101S-07 N. gonorrhoeae (St 49226)	negative	positive	negative		
NgDNA101S-08 Negative	negative	negative	negative		
NgDNA101S-09 N. gonorrhoeae (St 49226)	negative	positive	negative		
NgDNA101S-10 N. gonorrhoeae (St 49226)	negative	positive	negative		
QCMD 2018 N	lycoplasma genit	alium			
MG18S-01 Negative	negative	negative	negative		
MG18S-02 M. genitalium G37	negative	negative	positive		
MG18S-03 M. genitalium G37 *	negative	negative	positive		
MG18S-04 M. genitalium G37	negative	negative	positive		
MG18S-05 M. genitalium G37 *	negative	negative	negative		
MG18S-06 M. genitalium G37	negative	negative	positive		
MG18S-07 M. genitalium G37	negative	negative	positive		
MG18S-08 M. genitalium M6306	negative	negative	positive		
MG18S-09 M. genitalium M6306	negative	negative	positive		
MG18S-10 M. genitalium M6306	negative	negative	positive		

* Educational sample, very low amount of target copies

Eluates with known status	diarellaSTI-1 C. trachomatis	diarellaSTI-1 N. gonorrhoeae	diarellaSTI-1 M. genitalium
	FAM channel	Cy5 channel	ROX channel
Cytomegalievirus	negative	negative	negative
Chlamydia pneumoniae	negative	negative	negative
Herpes Simplex Virus Type 1	negative	negative	negative
Herpes Simplex Virus Type 2	negative	negative	negative
Mycoplasma pneumoniae	negative	negative	negative
Mycoplasma hyopneumoniae	negative	negative	negative
Treponema phagadenis	negative	negative	negative
Varizella Zoster Virus Genotype 3	negative	negative	negative
Varizella Zoster Virus Genotype 5	negative	negative	negative
Chlamydia trachomatis	positive	negative	negative
Mycoplasma genitalium	negative	negative	positive
Neisseria gonorrhoeae	negative	positive	negative
Gardnerella vaginalis	negative	negative	negative
Trichomonas vaginalis	negative	negative	negative
Mycoplasma hominis	negative	negative	negative
Ureaplasma parvum	negative	negative	negative
Ureaplasma urealyticum	negative	negative	negative

Table 10: Eluted DNA/RNA from bacterial and viral pathogens tested for the determination of the analytical specificity of diarellaSTI-1 real time PCR Kit.

Table 11: Qualified field samples tested for C. trachomatis using diarellaSTI-1 real time PCR.

		Chlamydia trachomatis	
		positive	negative
diarellaSTI-1	positive	12	0
	negative	0	312
		Sensitivity (%)	Specificity (%)
		100	100

		Neisseria gonorrhoeae	
		positive	negative
diarellaSTI-1	positive	5	0
	negative	0	319
		Sensitivity (%)	Specificity (%)
		100	100

Table 12: Qualified field samples tested for N. gonorrhoeae using diarellaSTI-1 real time PCR.

Table 13: Qualified field samples tested for M. genitalum using diarellaSTI-1 real time PCR.

		Mycoplasma genitalium	
		positive	negative
diarellaSTI-1	positive	2	0
ularellasti-1	negative	0	322
		Sensitivity (%)	Specificity (%)
		100	100

16.3 Linear Range

The linear range of the diarellaSTI-1 real time PCR Kit was evaluated by analysing logarithmic dilution series of quantified synthetic DNAs of the target sequences.

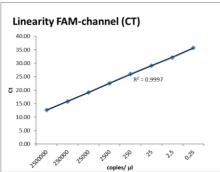


Figure 1: Determination of the linear range of the diarellaSTI-1 real time PCR Kit for Chlamydia trachomatis (CT) in the FAM channel.

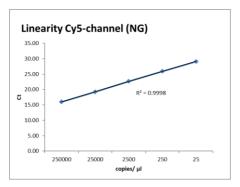


Figure 2: Determination of the linear range of the diarellaSTI-1 real time PCR Kit for Neisseria gonorrhoeae (NG) in the Cy5 channel.

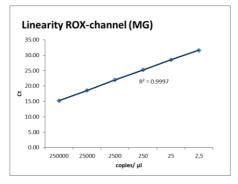


Figure 3: Determination of the linear range of the diarellaSTI-1 real time PCR Kit for the Mycoplasma genitalium (MG) in the ROX channel.

16.4 Precision

The precision of the diarellaSTI-1 real time PCR Kit was determined as intraassay variability, inter-assay variability and inter-lot variability.

Variability data are expressed by standard deviation and coefficient of variation. The data are based on quantification analyses of defined concentrations of C. trachomatis specific synthetic DNA, N. gonorrhoeae specific synthetic DNA, M. genitalium specific synthetic DNA and on the threshold cycle of the Control DNA (IPC). The results are shown in Table 14.

C. trachomatis (FAM)	copies/µl	Standard Deviation	Coefficient of Variation [%]
Intra-Assay Variability	2.5	0.31	0.97
Inter-Assay-Variability	2.5	0.14	0.42
Inter-Lot-Variability	2.5	0.19	0.59
N. gonorrhoeae (Cy5)	copies/µl	Standard Deviation	Coefficient of Variation [%]
Intra-Assay Variability	2.5	0.44	1.37
Inter-Assay-Variability	2.5	0.25	0.79
Inter-Lot-Variability	2.5	0.13	0.40
M. genitalium (ROX)	copies/µl	Standard Deviation	Coefficient of Variation [%]
Intra-Assay Variability	2.5	0.30	0.95
Inter-Assay-Variability	2.5	0.53	1.67
Inter-Lot-Variability	2.5	0.20	0.62
IPC (HEX)	copies/µl	Standard Deviation	Coefficient of Variation [%]
Intra-Assay Variability	250	0.22	0.75
Inter-Assay-Variability	250	0.32	1.07
Inter-Lot-Variability	250	0.61	2.01

Table 14: Precision of the diarellaSTI-1 real time PCR Kit

17 Abbreviations and Symbols

DNA	Deoxyribonucleic Acid	REF	Catalog number
PCR	Polymerase Chain Reaction	Σ	Contains sufficient for <n> test</n>
REACTION MIX	Reaction Mix	-18°C	Upper limit of temperature
CONTROL +	Positive Control	-	Manufacturer
CONTROL —	Negative Control	\leq	Use by YYYY-MM-DD
CONTROL DNA IPC	Control DNA (IPC)	LOT	Batch code
CONT	Content	RUO	Research use only
		i	Consult Instruction for Use

18 Literature

- [1] Bébéar and de Barbeyrac. 2009. Genital Chlamydia trachomatis infections. Clin Microbiol Infect 2009; 15: 4 10
- [2] Ng and Martin. 2005. The laboratory diagnosis of Neisseria gonorrhoeae. Can J Infect Dis Med Microbiol. 16(1) 15 25
- [3] Gaydos. 2017. Mycoplasma genitalium: Accurate Diagnosis is necessary for adequate treatment. Journal of Infectious Diseases. 216(S2): S406 -411