

Instruction for Use

diarellaBV-1 real time PCR Kit

For *in vitro* detection and quantification of the DNA of Gardnerella vaginalis, Atopobium vaginae and Lactobacillus species extracted from biological specimens.

C F

Index

1		Inten	ded Purpose3				
2		Patho	gen Information3				
3		Princi	ple of the Test				
4		Packa	Package Contents4				
5		Equip	ment and Reagents to be Supplied by User 4				
6		Trans	port, Storage and Stability5				
7		Warn	ings and Precautions5				
8		Samp	le Material6				
9		Samp	le Preparation6				
10		Contr	ol DNA 6				
11		Real t	time PCR				
	11	.1	Important Points Before Starting:				
	11	.2	Quantification Standards7				
	11	.3	Procedure				
	11	.4	Instrument Settings				
12		Data	Analysis				
13		Assay	vValidation14				
14		Limita	ations of the Method15				
15		Trout	pleshooting15				
16		Kit Pe	erformance				
	16	.1	Analytical Sensitivity17				
	16	.2	Analytical Specificity17				
	16	.3	Linear Range				
	16	.4	Precision				
	16	.5	Diagnostic Sensitivity				
17		Abbre	eviations and Symbols21				
18		Litera	iture				

1 Intended Purpose

The Kit is designed for the quantitative detection of the nucleic acid of Gardnerella vaginalis, Atopobium vaginae and Lactobacillus species in eluates from biological specimens. The assay is an in vitro diagnostic medical device and intended to be used by professional users in a laboratory environment. It can be performed manually or using an automated platform. The assay serves as an aid in the diagnosis, screening and monitoring of bacterial vaginosis.

2 Pathogen Information

Gardnerella vaginalis is a facultative anaerobic, coccoid bacterium of the family of Bifidobacteriaceae. In low copy numbers it is part of the common vaginal flora. When the equilibrium of the vaginal microbiome is disturbed, the number of G. vaginalis can increase a lot. G. vaginalis is not considered to be the cause of bacterial vaginoses [1] [2] but it can be used as a reporter for the altered vaginal microbiome.

Atopobium vaginae is a facultative anaerobic, rod-shaped bacterium of the family of Atopobiaceae. It is also known as Fannyhessea vaginae and isolated in a lot of cases of bacterial vaginosis [3]. A. vaginae also seems to be implicated in treatment failures and birth risks.

Lactobacilli, namely L. crispatus, L. gasseri, L. jenseni and L. iners are rod-shaped aerotolerant anaerobes and represent the dominant bacteria clade in the human vaginal microbiome. In cases of bacterial vaginosis, the number of lactobacilli is often declined and the equilibrium in the vaginal microbiome disturbed. This results usually in a loss of acidity.

3 Principle of the Test

The diarellaBV-1 real time PCR Kit contains specific primers and dual-labeled probes for the amplification of the DNA of Gardnerella vaginalis, Atopobium vaginae and Lactobacillus species extracted from biological specimens.

The presence of nucleic acid is detected by an increase in fluorescence due to hydrolysis of the probes during amplification. The fluorescence of the Lactobacillus species specific probes is measured in the FAM channel. The fluorescence of the Gardnerella vaginalis specific probes is measured in the ROX channel. The fluorescence of the Atopobium vaginae specific probes is measured in the Cy5 channel.

The simple presence of the Gardnerella vaginalis or Atopobium vaginae does not compulsory imply a bacterial vaginosis. The diagnosis is dependent on the proportions of the different bacteria in relation to each other. For the quantification of the different bacteria, the diarellaBV-1 real time PCR Kit contains three quantification standards. Each quantification standard includes synthetic DNA of all of the three individual target sequences.

Furthermore, diarellaBV-1 real time PCR Kit contains a Control DNA (Internal Process Control, IPC), which is added during DNA extraction and detected in the same reaction by a HEX-labeled probe.

The Control DNA allows the detection of PCR inhibition and acts as control, that the nucleic acid was isolated from the biological specimen.

4 Package Contents

The reagents supplied are sufficient for 96 reactions.

Label	Lid Colour	Content 96	Concentration copies/µl
Reaction Mix	yellow	1 x 1344 μl	-
Positive Control	red	1 x 150 μl	-
Negative Control	green	1 x 150 μl	-
Control DNA	colourless	1 x 480 μl	-
Standard 1	black	1 x 100 μl	100,000
Standard 2	violett	1 x 100 μl	10,000
Standard 3	orange	1 x 100 μl	1,000

Table 1: Components of the diarellaBV-1 real time PCR Kit

5 Equipment and Reagents to be Supplied by User

- DNA isolation kit (e.g. NukEx Mag RNA/DNA, gerbion Cat. No. G05012)
- PCR grade Water
- Sterile microtubes
- Pipets (adjustable volume)
- Sterile pipet tips with filter
- Table centrifuge
- Vortexer
- Real time PCR instrument
- Optical PCR reaction tubes with lid or optical PCR reaction plate with optical foil
- Optional: Liquid handling system for automation

6 Transport, Storage and Stability

The diarellaBV-1 real time PCR Kit is shipped on dry ice. All components must be stored at maximum -18°C in the dark immediately after receipt. Do not use reagents after the date of expiry printed on the package. Up to 20 freeze and thaw cycles are possible. Protect kit components from direct sunlight during the complete test run.

7 Warnings and Precautions

Read the Instruction for Use carefully before using the product.

Before first use check the product and its components for:

- Use of this product is limited to personnel specially instructed and trained in the techniques of real time PCR procedures.
- Specimens should always be treated as infectious and/or biohazardous in accordance with safe laboratory procedures.
- Avoid microbial and nuclease (DNase/RNase) contamination of the eluates and the components of the kit.
- Always use DNase/RNase-free disposable pipette tips with aerosol barriers.
- Always wear protective disposable powder-free gloves when handling kit components.
- Use separated and segregated working areas for (1) sample preparation, (2) reaction setup and (3) amplification/detection activities. The workflow in the laboratory should proceed in unidirectional manner. Always wear disposable gloves in each area and change them before entering a different area.
- Dedicate supplies and equipment to the separate working areas and do not move them from one area to another.
- Store positive and/or potentially positive material separated from all other components of the kit.
- Do not open the reaction tubes/plates post amplification to avoid contamination with amplicons.
- Additional controls may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organisations.
- Do not autoclave reaction tubes after the PCR, since this will not degrade the amplified nucleic acid and will bear the risk to contaminate the laboratory area.
- Discard sample and assay waste according to your local safety regulations.
- Do not mix components from different lots.

8 Sample Material

Starting material for diarellaBV-1 real time PCR is DNA isolated from biological specimens. Common samples for the DNA extraction for the analysis of the vaginal microbiome are vaginal swabs or urine.

9 Sample Preparation

Commercial kits for DNA isolation such as the following are recommended:

• NukEx Mag RNA/DNA, gerbion Cat. No. G05012

Please follow the Instruction for Use of the respective extraction kit.

Important:

In addition to the samples always run a ,water control' in your extraction. Treat this water control analogous to a sample.

Comparing the amplification of the Control DNA in the samples to the amplification of the Internal Control in the water control will give insights on possible inhibitions of the real time PCR. Furthermore, possible contaminations during DNA extraction will be detectable.

Please note the chapter ,Control DNA'.

If the real time PCR is not performed immediately, store extracted DNA according to the instructions given by the manufacturer.

10 Control DNA

A Control DNA is supplied as extraction control. This allows the user to control the DNA isolation procedure and to check for possible real time PCR inhibition.

Add 5 μl Control DNA per extraction. Mix well. Perform the DNA isolation according to the manufacturer's instructions.

The Control DNA must be added to the Lysis Buffer of the extraction kit.

11 Real time PCR

11.1 Important Points Before Starting:

- Please pay attention to chapter 7 ,Warnings and Precautions'.
- Before setting up the real time PCR familiarise yourself with the real time PCR instrument and read the user manual supplied with the instrument.
- The programming of the thermal profile should take place before the PCR set up.

- In every PCR run one Positive Control and one Negative Control should be included.
- Before each use, all reagents should be thawed completely at room temperature, thoroughly mixed, and centrifuged very briefly.

11.2 Quantification Standards

The diarellaBV-1 real time PCR Kit includes three Quantification Standards. Use 6 μl of each Quantification Standard to evaluate the target concentrations of the PCR targets. The concentrations are calculated according to chapter 'Data Analysis'.

The Quantification Standards can be used in every single experiment or saved in a standard curve file on the qPCR instrument. It is recommended to produce a new Quantification Standard file for each new lot.

11.3 Procedure

The Master Mix contains all of the components needed for the real time PCR except the sample. Prepare a volume of Master Mix for at least one sample more than required, in order to compensate for pipetting inaccuracy.

Table 2: Preparation of the Master Mix

Volume per Reaction	Volume Master Mix
14.0 μl Reaction Mix	14.0 µl x (N+1)

Real time PCR set-up

- Place the number of optical PCR reaction tubes needed into the respective tray of the real time PCR instrument / take an optical PCR reaction plate.
- Pipet $14\;\mu l$ of the Master Mix into each optical PCR reaction tube / the optical PCR reaction plate.
- Add 6 µl of the eluates from the DNA isolation (including the eluate of the water control), the Positive Control, the Negative Control and the Standards (optional) to the corresponding optical PCR reaction tube / the optical PCR reaction plate (Table 3).
- Close the optical PCR reaction tubes / the optical PCR reaction plate immediately after filling in order to reduce the risk of contamination.

Table 3: Preparation of the real time PCR

Component	Volume	
Master Mix	14.0 µl	
Sample	6.0 μl	
Total Volume	20.0 µl	

11.4 Instrument Settings

For the real time PCR use the thermal profile shown in Table 4.

Table 4: real time PCR thermal profile

Description	Time	Temperature	Number of Cycles
Initial Denaturation	5 min	95°C	1
Amplification of DNA			
Denaturation	10 sec	95°C	
Annealing and	40 sec	60°C	45
Extension	Acquisition at the	e end of this step	

If in the same run samples should be tested for pathogens with RNA genome, use the thermal profile shown in Table 5.

Table 5: real time PCR thermal profile

Description	Time	Temperature	Number of Cycles	
Reverse Transcription	10 min	45°C	1	
Initial Denaturation	5 min	95°C	1	
Amplification of DNA				
Denaturation	10 sec	95°C		
Annealing and	40 sec	60°C	45	
Extension	Acquisition at the	end of this step		

Dependent on the real time instrument used, further instrument settings have to be adjusted according to Table 6.

Real time PCR Instrument	Parameter	Detection Channel	Notes		
			Color Compensation Kit Multiplex 1 (G070MP1-CC) required		
			Melt Factor	Quant Factor	Max Integration Time (sec)
	Lactobacillus spp.	465-510	1	10	1
LightCycler 480II	Control DNA (IPC)	533-580	1	10	2
Lighteycler 480h	Gardnerella vaginalis	533-610	1	10	2
	Atopobium vaginae	618-660	1	10	3
	Lactobacillus spp.	FAM	Gain 8		
Stratagene Mx3000P /	Control DNA (IPC)	HEX	Gain 1	Reference Dye: None	
Mx3005P	Gardnerella vaginalis	ROX	Gain 1		
	Atopobium vaginae	Cy5	Gain 4		
QuantStudio 5	Lactobacillus spp.	FAM			
CFX96	Control DNA (IPC)	HEX	Option Reference Dye ROX: No		DOY NO
CFX Opus 96 Aria Mx	Gardnerella vaginalis	ROX			e ROX: NO
qTower ³ G	Atopobium vaginae	Cy5			
	Lactobacillus spp.	Green	Gain 8		
Min a DCD Cyclor	Control DNA (IPC)	Yellow	Gain 10		
Mic qPCR Cycler	Gardnerella vaginalis	Orange	Gain 10		
	Atopobium vaginae	Red	Gain 10		

Table 6: Overview of the instrument settings required for the diarellaBV-1 real time PCR.

12 Data Analysis

•								
	Signal/C _T Va	lues						
	FAM	Cy5	ROX	HEX				
	Channel	Channel	Channel	Channel	Interpretation			
	Lactobacillus	Atopobium	Gardnerella	IPC				
	spp.	vaginae	vaginalis					
				positive	For Interpretation, comparison			
	positive (one or more parameters)			or	of the calculated quantities is			
	(0110 0		eters	negative ¹	needed.			
					Negative result, the sample			
	negative	negative	negative	≤ 34 ²	contains no Lactobacillus spp.,			
					A. vaginae or G. vaginalis DNA.			
					No diagnostic statement can			
				negative	be made.			
	negative	negative	negative	or	The real time PCR is either			
				> 34 ²	inhibited or errors occurred			
					during DNA extraction.			

Following results can occur:

 $^{\rm 1}$ A strong positive signal in the FAM, ROX or the Cy5 channel can inhibit the IPC. In such cases the result for the Control DNA can be neglected.

 2 In case of high C_{T} values, the IPC should be compared to the water extraction control as described in the chapter 'Assay validation'.

Quantitative Analysis

The diarellaBV-1 real time PCR Kit includes three Quantification Standards. The calculation of the bacterial load can be done manually or, in most PCR cyclers, directly in the instrument software by the definition of quantification standards. The result will show the concentration of the specific bacterial load in the eluate.

$$N = 10^{\frac{(C_T - b)}{a}}$$

CT Threshold Cycle

a Slope

- N copy number [copies/µl]
- b Intercept

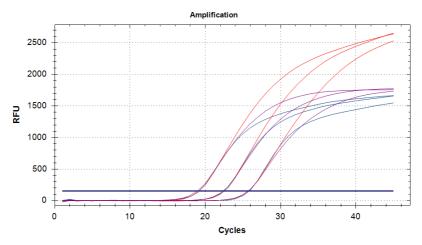


Figure 1: The amplification curves of the three standards for Lactobacillus species (FAM channel, blue), Gardnerella vaginalis (ROX channel, red) and Atopobium vaginae (Cy5 channel, purple) with 100,000 copies per μ l (Standard 1), 10,000 copies per μ l (Standard 2) and 1,000 copies per μ l (Standard 3).

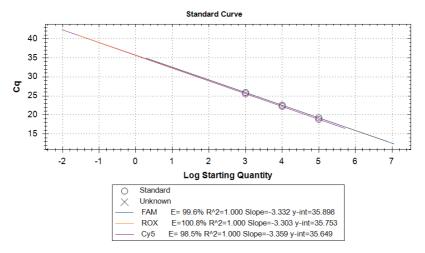


Figure 2: The C_T values of the three standards for Lactobacillus species (FAM channel), Gardnerella vaginalis (ROX channel) and Atopobium vaginae (Cy5 channel) plotted against the target copies per μ l.

Interpretation of the Quantitative Analysis

The diagnosis of bacterial vaginosis is dependent on the proportions of the different bacteria in relation to each other. This is usually addressed by the Amsel criteria and the Nugent score, both microscopic methods. Up to now, there is no strict rule how qPCR matches those methods, but recent publications indicate Atopobium vaginae and Gardnerella vaginalis in comparison to Lactobacilli as useful to identify bacterial vaginosis [4].

To show potential outcomes of the diarellaBV-1 real time PCR, 4 samples are listed in Table 7. The corresponding amplification curves are presented in the following figures.

	Lactobacillus species copies/µl	Gardnerella vaginalis copies/µl	Atopobium vaginae copies/μl	Percentage Lactobacillus species
Sample A	1.4 x 10 ⁶	-	-	100%
Sample B	1.025 x 10 ⁶	1.003 x 10 ⁵	-	90.8%
Sample C	9.719 x 10 ³	1.090 x 10 ³	5.236 x 10⁵	1.7%
Sample D	1.66 x 10 ³	8.331 x 10 ⁴	-	2.3%

Table 7: Samples for the outcome of the quantitative analyses.

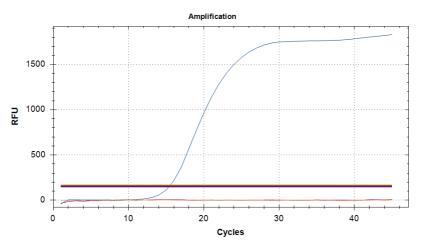


Figure 3: Sample A, only Lactobacillus species (blue) are present, the equilibrium of the vaginal microbiome is not affected by Atopobium vaginae or Gardnerella vaginalis.

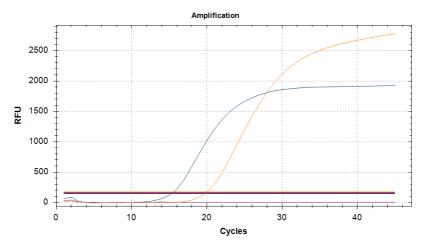


Figure 4: Sample B, high copy numbers for Lactobacillus species (blue) and Gardnerella vaginalis (orange). Lactobacillus species represent still 90.8% of the detected bacteria. The equilibrium of the vaginal microbiome seems to be unaffected or only slightly affected by the presence of Gardnerella vaginalis.

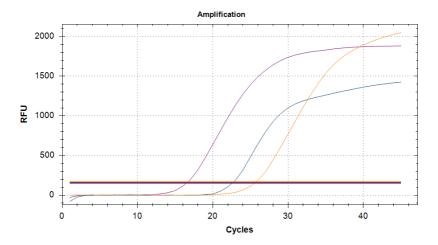


Figure 5: Sample C, very high copy numbers for Atopobium vaginae (purple). Medium copy numbers for Lactobacillus species (blue) and Gardnerella vaginalis (orange). Lactobacillus species represent 1.7% of the detected bacteria. The equilibrium of the vaginal microbiome seems to be affected, especially by Atopobium vaginae.

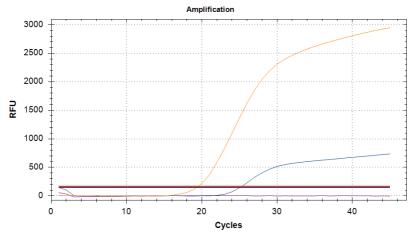


Figure 6: Sample D, high copy numbers for Gardnerella vaginalis (orange). Medium copy numbers for Lactobacillus species (blue). Lactobacillus species represent 2.3% of the detected bacteria. The equilibrium of the vaginal microbiome seems to be intermediate affected by Gardnerella vaginalis.

13 Assay Validation

Negative Control

The Negative Control must show no C_T in the FAM, Cy5, ROX and HEX channel.

Positive Control

The Positive Control must show a positive (i.e. exponential) amplification curve in the different channels FAM, Cy5 and ROX. The Positive Control must fall below a C_T of 30.

Internal Control

The following values for the amplification of the Internal Control are valid using gerbion nucleic acid extraction kit NukEx Mag RNA/DNA. The Control DNA (IPC) must show a positive (i.e. exponential) amplification curve.

The value of the IPC must be below a C_T of 34. If the IPC is above C_T 34 this points to a purification problem or a strong positive sample that can inhibit the IPC. In the latter case, the assay is valid. It is recommended to perform the extraction of a water control in each run. The value of the IPC in the water control must be below a C_T of 34.

If other nucleic acid extraction kits are used, the customer must define own cut offs. In this case the C_T value of the Control DNA (IPC) in an eluate from a sample should not be delayed for more than 4 C_T in comparison to an eluate from an extracted water control.

14 Limitations of the Method

- Strict compliance with the Instruction for Use is required for optimal results.
- Use of this product is limited to personnel specially instructed and trained in the techniques of real time PCR and in vitro diagnostic procedures.
- Good laboratory practice is essential for proper performance of this assay.
- All reagents should be closely monitored for impurity and contamination. Any suspicious reagents should be discarded.
- This assay must not be used on a biological specimen directly. Appropriate nucleic acid extraction methods have to be conducted prior to use of this assay.
- The presence of PCR inhibitors may cause false negative or invalid results.
- As with any diagnostic test, results of the diarellaBV-1 real time PCR Kit need to be interpreted in consideration of all clinical and laboratory findings.

15 Troubleshooting

The following troubleshooting guide is included to help you with possible problems that may arise when performing a real time PCR. If you have further questions, please do not hesitate to contact our scientists on info@gerbion.com.

No fluorescence signal in the F	AM, Cy5, ROX channel of the Positive Control
The selected channel for analysis does not comply with the protocol	Select the FAM channel for analysis of Lactobacillus specific amplification, the Cy5 channel for the A. vaginae specific amplification, the ROX channel for the G. vaginalis specific amplification and the HEX channel for the amplification of the Control DNA (IPC).
Incorrect configuration of the real time PCR	Check your work steps and compare with chapter 'Procedure'.
The programming of the thermal profile is incorrect	Compare the thermal profile with the protocol described in chapter 'Instrument Settings'.
Incorrect storage conditions for one or more kit components or kit expired	Check the storage conditions and the date of expiry printed on the kit label. If necessary, use a new kit and make sure kit components are stored as described in chapter 'Transport, Storage and Stability'.

Weak or no signal of the Contr specific FAM and/or Cy5 and/o	ol DNA (IPC) and simultaneous absence of a signal in the or ROX channel
real time PCR conditions do	Check the real time PCR conditions (chapter 'Real time
not comply with the protocol	PCR').
real time PCR inhibited	Make sure that you use an appropriate isolation method (see chapter 'Sample Preparation') and follow the manufacturer's instructions. Make sure that the ethanol- containing washing buffers have been completely removed.
sample material not sufficient	Make sure that enough sample material has been applied to the extraction. Use an appropriate isolation method (see chapter 'Sample Preparation') and follow the manufacturer's instructions.
DNA loss during isolation process	In case the Control DNA was added before extraction, the lack of an amplification signal can indicate that the DNA isolation was not successful. Make sure that you use an appropriate isolation method (commercial kits are recommended) and stick to the manufacturer's protocol.
Incorrect storage conditions	Check the storage conditions and the date of expiry
for one or more components	printed on the kit label. If necessary, use a new kit and
or kit expired	make sure kit components are stored as described in chapter 'Transport, Storage and Stability'.
Detection of a fluorescence sig	nal in the FAM channel of the Negative Control
Contamination with Lactobacillus species during preparation of the PCR	Lactobacilli are part of the human skin microbiome and present in huge numbers. If the detected fluorescence signal shows a C _T value \geq 35, it can be ignored. A C _T value \geq 35 represents approximately 1 copy of Lactobacillus per μ l of sample. This does not affect the interpretation of the result.
Detection of a fluorescence sig	nal in the Cy5 and/or ROX channel of the Negative Control
Contamination during preparation of the PCR	Repeat the real time PCR in replicates. If the result is negative in the repetition, the contamination occurred when the samples were pipetted into the optical PCR reaction tubes. Make sure to pipet the Positive Control last and close the optical PCR reaction tube immediately after adding the sample. If the same result occurs, one or more of the kit components might be contaminated. Make sure that work space and instruments are decontaminated regularly. Use a new kit and repeat the real time PCR.

16 Kit Performance

16.1 Analytical Sensitivity

For the FAM, ROX and Cy5 channel, the limit of detection (LoD) of diarellaBV-1 real time PCR Kit was determined using serial dilutions of synthetic DNA-fragments containing the specific gene target sequences. The determination of the LoD was done on a CFX Opus 96 Instrument (Bio-Rad).

The LoD of diarellaBV-1 real time PCR Kit is \leq 2.5 genome copies per μl for the FAM, Cy5 and ROX channel.

16.2 Analytical Specificity

The specificity of the diarellaBV-1 real time PCR was evaluated with different ring trial samples of known status and different other relevant viruses and bacteria found in biological samples and basing on in silico analyses.

All ring trial samples and other eluates with known status were detected correctly. Results are shown in Table 8 and Table 9.

sample	Lactobacillus species	Atopobium vaginae	Gardnerella vaginalis
	FAM channel	Cy5 channel	ROX channel
QCMD 2020 Sexually	Transmitted Infe	ctions I	
STI_I101S-01 Trichomonas vaginalis	negative	negative	negative
STI_I101S-02 Mycoplasma hominis	negative	negative	negative
STI_I101S-03 G. vaginalis + T. vaginalis	negative	negative	positive
STI_I101S-04 M. genitalium (drug resistant)	negative	negative	negative
STI_I101S-05 M. genitalium (wild type)	negative	negative	negative
STI_I101S-06 Negative	negative	negative	negative
STI_I101S-07 Gardnerella vaginalis	negative	negative	positive
STI_I101S-08 Trichomonas vaginalis	negative	negative	negative
STI_I101S-09 M. hominis + C. trachomatis	negative	negative	negative
STI_I101S-10 Trichomonas vaginalis	negative	negative	negative

Table 8: Ring trial samples tested for the validation of the sensitivity and specificity of the diarellaBV-1 real time PCR Kit.

	diarellaBV-1	diarellaBV-1	diarellaBV-1
Eluates with known status	Lactobacillus	Atopobium	Gardnerella
Liuales with known status	species	vaginae	vaginalis
	FAM channel	Cy5 channel	ROX channel
Chlamydia pneumoniae	negative	negative	negative
Chlamydia trachomatis	negative	negative	negative
Cytomegalievirus	negative	negative	negative
Gardnerella vaginalis	negative	negative	positive
Herpes Simplex Virus Type 1	negative	negative	negative
Herpes Simplex Virus Type 2	negative	negative	negative
Mycoplasma genitalium	negative	negative	negative
Mycoplasma hominis	negative	negative	negative
Mycoplasma pneumoniae	negative	negative	negative
Neisseria gonorrhoeae	negative	negative	negative
Trichomonas vaginalis	negative	negative	negative
Ureaplasma parvum	negative	negative	negative
Ureaplasma urealyticum	negative	negative	negative
Varicella zoster virus Genotype 3	negative	negative	negative
Varicella zoster virus Genotype 5	negative	negative	negative

Table 9: Eluted DNA/RNA from bacterial and viral pathogens tested for the determination of the analytical specificity of diarellaBV-1 real time PCR Kit.

16.3 Linear Range

The linear range of the diarellaBV-1 real time PCR Kit was evaluated by analysing logarithmic dilution series of quantified synthetic DNAs of the target sequences.

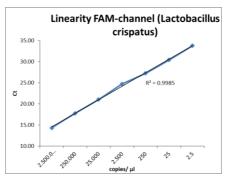


Figure 7: Determination of the linear range of the diarellaBV-1 real time PCR Kit for Lactobacillus crispatus in the FAM channel.

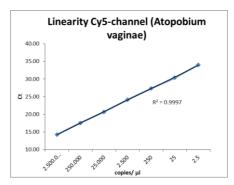


Figure 8: Determination of the linear range of the diarellaBV-1 real time PCR Kit for Atopobium vaginae in the Cy5 channel.

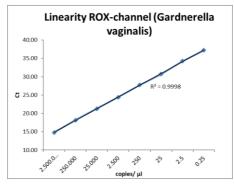


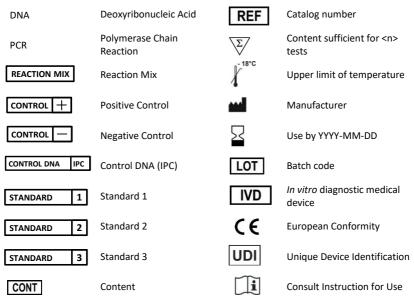
Figure 9: Determination of the linear range of the diarellaBV-1 real time PCR Kit for Gardnerella vaginalis in the ROX channel.

16.4 Precision

The precision of the diarellaBV-1 real time PCR Kit was determined as intra-assay variability, inter-assay variability and inter-lot variability.

Variability data are expressed by standard deviation and coefficient of variation. The data are based on quantification analyses of defined concentrations of Lactobacillus specific synthetic DNA, A. vaginae specific synthetic DNA and G. vaginalis specific synthetic DNA and additionally on the threshold cycle of the Control DNA (IPC). The results are shown in Table 10.

Lactobacillus crispatus (FAM)	copies/µl	Standard Deviation	Coefficient of Variation (%)
Intra-Assay Variability	2.5	0.36	1.05
Inter-Assay Variability	2.5	0.41	1.22
Inter-Lot Variability	2.5	0.09	0.27
Atopobium vaginae (Cy5)	copies/µl	Standard Deviation	Coefficient of Variation (%)
Intra-Assay Variability	2.5	0.37	1.07
Inter-Assay Variability	2.5	0.32	0.96
Inter-Lot Variability	2.5	0.44	1.28
Gardnerella vaginalis (ROX)	copies/µl	Standard Deviation	Coefficient of Variation (%)
Intra-Assay Variability	2.5	0.43	1.25
Inter-Assay Variability	2.5	0.20	0.59
Inter-Lot Variability	2.5	0.03	0.10
IPC (HEX)	copies/µl	Standard Deviation	Coefficient of Variation (%)
Intra-Assay Variability	2500	0.09	0.33
Inter-Assay Variability	2500	0.20	0.70
Inter-Lot Variability	2500	0.07	0.24


Table 10: Precision of the diarellaBV-1 real time PCR Kit

16.5 Diagnostic Sensitivity

The diagnostic sensitivity of real time (RT-)PCR assays is mainly dependent on the DNA/RNA extraction method used to isolate DNA and RNA from various biological specimens. DNA/RNA extraction reagents are not part of the gerbion real time (RT-)PCR kits. gerbion real time (RT-)PCR kits include an extraction control and guidelines for the validation criteria of the extraction control in each reaction. The extraction control indicates inhibition of the real time (RT-)PCR and/or inefficient nucleic acid extraction. It cannot be used as a calibrator.

Therefore, gerbion guarantees the analytical sensitivities and specificities of the real time (RT-)PCR kits, performed with eluted DNA and RNA from reference materials and ring trial samples and with synthetic nucleic acid fragments. gerbion does not guarantee diagnostic sensitivities. If diagnostic sensitivities are mentioned in manuals of gerbion real time (RT-)PCR kits, the data are strictly correlated to a specific nucleic acid extraction method that has been used during the validation of the respective kits and cannot be transferred to other extraction methods. It is the responsibility of the user to qualify the extraction methods used for DNA/RNA isolation from biological samples.

17 Abbreviations and Symbols

18 Literature

- [1] Schwebke et al. (2014). Role of Gardnerella vaginalis in the Pathogenesis of Bacterial Vaginosis: A Conceptual Model. JID 2014:210 (1. August)
- [2] Hickey et al. (2014). Gardnerella vaginalis Does Not Always Cause Bacterial Vaginosis. JID 2014:210 (15. November)
- [3] Polatti (2012). Bacterial Vaginosis, Atopobium vaginae and Nifuratel. CCP 2012, 7, 36-40
- [4] Loquet et al. (2021). Classification and Regression Trees for Bacterial Vaginosis Diagnosis in Pregnant Women Based on High-Throughput Quantitative PCR. JMD Vol.23 No.2 (February)