

Instruction for Use

virellaMonkeypox

real time PCR Kit

For *in vitro* detection of the DNA of Monkeypox virus extracted from biological specimens.

REF

G01148-96

96

gerbion GmbH & Co. KG Remsstr. 1

70806 Kornwestheim, DE phone: +49 7154 806 20 0 fax: +49 7154 806 20 29 e-mail: info@gerbion.com

www.gerbion.com

RUO

Index

1		Inten	ded Purpose	3
2		Patho	gen Information	3
3		Princi	ple of the Test	3
4		Packa	ge Contents	4
5		Equip	ment and Reagents to be Supplied by User	4
6		Trans	port, Storage and Stability	4
7		Warn	ings and Precautions	4
8		Samp	le Material	6
9		Samp	le Preparation	6
10		Contr	ol DNA	6
11		Real t	ime PCR	7
	11	.1	Important Points Before Starting	7
	11	.2	Preparation of the Positive Control	7
	11	.3	Procedure	8
	11	.4	Instrument Settings	9
12		Data	Analysis	. 12
13		Assay	Validation	. 13
14		Limita	ations of the Method	. 14
15		Troub	oleshooting	. 14
16		Kit Pe	rformance	. 15
	16	.1	Analytical Sensitivity	. 15
	16	.2	Analytical Specificity	. 16
	16	.3	Linear Range	. 17
	-0			
	16	.4	Precision	. 17
17	16		Precisioneviations and Symbols	

1 Intended Purpose

The Kit is designed for the qualitative detection of the nucleic acid of Monkeypox virus in eluates from biological specimens.

2 Pathogen Information

Monkeypox virus of the genus Orthopox in the family Poxviridae is a double-stranded DNA virus and is the causative agent of monkeypox. Monkeypox is a viral zoonosis (a virus transmitted to humans from animals) with symptoms similar to those seen in the past in smallpox patients, although it is clinically less severe. Symptoms include skin eruption, fever, intense headache, myalgia and intense asthenia. In rare cases, death has been reported after an infection with Monkeypox virus. The disease however is self limited with the symptoms lasting 2-4 weeks.

With the eradication of smallpox in 1980 and subsequent cessation of smallpox vaccination, monkeypox has emerged as the most important Orthopox virus for public health. Animal hosts include a range of rodents and non-human primates [1]. In May 2022, multiple cases of monkeypox were identified in several non-endemic countries. The outbreak seems to be based on human-to-human transmission.

3 Principle of the Test

The virellaMonkeypox real time PCR Kit contains specific primers and duallabeled probes for the amplification of the DNA of Monkeypox virus (OPG185 gene) extracted from biological specimens.

The presence of nucleic acid is detected by an increase in fluorescence due to hydrolysis of the probes during amplification. The fluorescence of the Monkeypox virus specific probe is measured in the FAM channel. The real time PCR protocol includes a melting curve to ensure the specificity of the detected signal.

Furthermore, the virellaMonkeypox real time PCR Kit contains a Control DNA (Internal Process Control, IPC), which is added during DNA extraction and detected in the same reaction by a HEX-labeled probe.

The Control DNA allows the detection of PCR inhibition and acts as control, that the nucleic acid was isolated from the biological specimen.

4 Package Contents

The reagents supplied are sufficient for 96 reactions.

Table 1: Components of the virellaMonkeypox real time PCR Kit

Label	Lid Colour	Content 96
Reaction Mix	yellow	1 x 1344 μl
Positive Control	red	1 x 50 μΙ
Negative Control	green	1 x 150 μl
Control DNA	colourless	1 x 480 μl

5 Equipment and Reagents to be Supplied by User

- DNA isolation kit (e.g. NukEx Mag RNA/DNA, gerbion Cat. No. G05012)
- PCR grade Water
- · Sterile microtubes
- Pipets (adjustable volume)
- · Sterile pipet tips with filter
- Table centrifuge
- Vortexer
- Real time PCR instrument
- Optical PCR reaction tubes with lid or optical PCR reaction plate with optical foil
- Optional: Liquid handling system for automation

6 Transport, Storage and Stability

The virellaMonkeypox real time PCR Kit is shipped on dry ice or cool packs. All components must be stored at maximum -18°C in the dark immediately after receipt. Do not use reagents after the date of expiry printed on the package. Up to 20 freeze and thaw cycles are possible. For convenience, opened reagents can be stored at +2-8°C for up to 6 months.

Protect kit components from direct sunlight during the complete test run.

7 Warnings and Precautions

Read the Instruction for Use carefully before using the product. Before first use check the product and its components for:

 Use of this product is limited to personnel specially instructed and trained in the techniques of real time PCR procedures.

- Specimens should always be treated as infectious and/or biohazardous in accordance with safe laboratory procedures.
- Avoid microbial and nuclease (DNase/RNase) contamination of the eluates and the components of the kit.
- Always use DNase/RNase-free disposable pipette tips with aerosol barriers.
- Always wear protective disposable powder-free gloves when handling kit components.
- Use separated and segregated working areas for (1) sample preparation,
 (2) reaction setup and (3) amplification/detection activities. The workflow in the laboratory should proceed in unidirectional manner.
 Always wear disposable gloves in each area and change them before entering a different area.
- Dedicate supplies and equipment to the separate working areas and do not move them from one area to another.
- Store positive and/or potentially positive material separated from all other components of the kit.
- Do not open the reaction tubes/plates post amplification to avoid contamination with amplicons.
- Additional controls may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organisations.
- Do not autoclave reaction tubes after the PCR, since this will not degrade
 the amplified nucleic acid and will bear the risk to contaminate the
 laboratory area.
- Discard sample and assay waste according to your local safety regulations.
- Do not mix components from different lots.

8 Sample Material

Starting material for virellaMonkeypox real time PCR is DNA isolated from biological specimens.

Biological specimen used for the DNA extraction can be respiratory swabs or swabs of blisters or crusts of the human skin.

9 Sample Preparation

Commercial kits for DNA isolation such as the following are recommended:

NukEx Mag RNA/DNA, gerbion Cat. No. G05012

Please follow the Instruction for Use of the respective extraction kit.

Important:

In addition to the samples always run a ,water control' in your extraction. Treat this water control analogous to a sample.

Comparing the amplification of the Control DNA in the samples to the amplification of the Internal Control in the water control will give insights on possible inhibitions of the real time PCR. Furthermore, possible contaminations during DNA extraction will be detectable.

Please note the chapter ,Control DNA'.

If the real time PCR is not performed immediately, store extracted DNA according to the instructions given by the manufacturer.

10 Control DNA

A Control DNA is supplied as extraction control. This allows the user to control the DNA isolation procedure and to check for possible real time PCR inhibition.

Add 5 μ l Control DNA per extraction (5 μ l x (N+1)). Mix well. Perform the DNA isolation according to the manufacturer's instructions.

The Control DNA must be added to the Lysis Buffer of the extraction kit.

11 Real time PCR

11.1 Important Points Before Starting

- Please pay attention to chapter 7, Warnings and Precautions'.
- Before setting up the real time PCR familiarise yourself with the real time PCR instrument and read the user manual supplied with the instrument.
- The programming of the thermal profile should take place before the PCR set up.
- In each PCR run one Positive Control and one Negative Control should be included.
- Before each use, all reagents should be thawed completely at room temperature, thoroughly mixed, and centrifuged very briefly.

11.2 Preparation of the Positive Control

The Positive Control is stored in an extra storage buffer which may alter the peak of the melting curves. For a better comparison with the samples, the Positive Control must be freshly diluted 1:10 in PCR grade water before each PCR run

Prepare the Positive Control according to Table 2.

Table 2: Preparation of the Positive Control

Component	Volume
Positive Control	2.0 μΙ
PCR grade water	18.0 μΙ

11.3 Procedure

The Master Mix contains all of the components needed for PCR except the sample. Prepare a volume of Master Mix for at least one sample more than required, in order to compensate for pipetting inaccuracy.

Table 3:Preparation of the Master Mix

Volume per Reaction	Volume Master Mix
14.0 μl Reaction Mix	14.0 μl x (N+1)

Real time PCR set-up

- Place the number of optical PCR reaction tubes needed into the respective tray of the real time PCR instrument / take an optical PCR reaction plate.
- Pipet 14 μl of the Master Mix into each optical PCR reaction tube / the optical PCR reaction plate.
- Add 6 μl of the eluates from the DNA isolation (including the eluate of the water control), the diluted Positive Control and the Negative Control to the corresponding optical PCR reaction tube / the optical PCR reaction plate (Table 4).
- Close the optical PCR reaction tubes / the optical PCR reaction plate immediately after filling in order to reduce the risk of contamination.

Table 4: Preparation of the real time PCR

Component	Volume
Master Mix	14.0 μΙ
Sample	6.0 μΙ
Total Volume	20.0 μΙ

11.4 Instrument Settings

For the real time PCR use one of the thermal profiles shown in Table 5 and Table 6. For gerbion real time PCR kits used for amplification of DNA, the reverse transcription can be omitted.

Table 5: real time PCR thermal profile without Reverse Transcription

Description	Time	Temperature	Number of Cycles	Acquisition
Initial Denaturation	5 min	95°C	1	no
Denaturation	10 sec	95°C		no
Annealing and Extension	40 sec	60°C	45	end of step
Melting Curve	see the ta	ables below for in	ndividual cy	cler settings

Table 6: real time PCR thermal profile with Reverse Transcription

Description	Time	Temperature	Number of Cycles	Acquisition
Reverse	10 min	45°C	1	no
Transcription	10 111111	43 C	-	110
Initial Denaturation	5 min	95°C	1	no
Denaturation	10 sec	95°C		no
Annealing and	40 sec	60°C	45	end of step
Extension	40 350			end of step
Melting Curve	see the tables below for individual cycler settings			

LightCycler 480II

Program Step		Melting Cur	ve	Cooling
Parameter				
Analysis Mode	Melting Curves			None
Cycles		1		1
Target [°C]	95	40	76	40
Hold [hh:mm:ss]	00:00:30	00:02:00	-	00:00:30
Ramp Rate [°C/s]	4.4	1.5	0.29	1.5
Acquisition Mode	None	None	Continuous	None
Acquisitions [per °C]	-	-	1	-

Bio-Rad CFX96 / CFX Opus 96

Program Step	Melt Curve
Parameter	
Melt from	52.0 °C to 76.0 °C
Increment	0.5 °C for 0:05 + Plate Read

Mic qPCR Cycler

Program Step	Melt
Parameter	
Melt from	52.0 °C to 76.0 °C at 0.1 °C/s
Acquire on	Green

NEOS-48 qPCR

Program Step	Continuous Melt		
Parameter			
Cycle	1		
Step	1	2	
Temperature	52.0 °C	76.0 °C	
Time	00:01 -		
Fluorescence	None	5 Readings/°C	

QuantStudio 5

Program Step	Melt Curve Stage		
Parameter			
Step	1	2 (Dissociation)	
Temperature	52.0 °C	76.0 °C	
Time	00:01	00:01	
Ramp Rate	1.6 °C/s	0.1 °C/s	

MyGo Mini S

Program Step	Melt		
Parameter			
Melt from	52.0 °C to 76.0 °C		
Initial Stage Ramp	1.5 °C		
Final Stage Ramp	0.1 °C		

Dependent on the real time PCR instrument used, further instrument settings have to be adjusted according to Table 7.

Table 7: Overview of the instrument settings required for the virellaMonkeypox real time PCR.

Real time PCR Instrument	Parameter	Detection Channel	Notes		
			Color Comp e.g. pre-ins FAM (510)	talled univ	ersal CC
LightCycler 480II			Melt Factor	Quant Factor	Max Integration Time (sec)
	Monkeypox virus	465-510	1	10	1
	Control DNA (IPC)	533-580	1	10	2
QuantStudio 5 CFX96	Monkeypox virus	FAM			
CFX Opus 96 NEOS-48 qPCR MyGo Mini S	Control DNA (IPC)	HEX	Option Reference Dye ROX: NO		e ROX: NO
Min DCD Code	Monkeypox virus	Green	Gain 8		
Mic qPCR Cycler	Control DNA (IPC)	Yellow	Gain 10		

12 Data Analysis

Following results can occur:

Signal/C _T Values		Melting Curve / T _m Values ⁴	
FAM Channel Monkeypox virus	HEX Channel IPC	FAM channel	Interpretation
positive	positive or negative ¹	68 – 72°C ²	Positive result, the sample contains Monkeypox virus DNA.
positive or negative	positive or negative ¹	< 68°C	Negative result, the sample contains no Monkeypox virus DNA, but another Orthopox virus like Vaccinia virus is present.
negative	≤ 34 ³		Negative result , the sample contains no Monkeypox virus DNA.
negative	negative or > 34 ³		No diagnostic statement can be made. The real time PCR is either inhibited or errors occurred during DNA extraction.

¹ A strong positive signal in the FAM channel can inhibit the IPC. In such cases the result for the Control DNA can be neglected.

² The peak of the melting curve depends on the real time Instrument. The peak of a positive sample must match the peak of the diluted Positive Control (\pm 1 °C).

 $^{^{3}}$ In case of high C_{T} values, the IPC should be compared to the water extraction control as described in the chapter 'Assay validation'.

⁴ Only the melting curves in the FAM channel are evaluated.

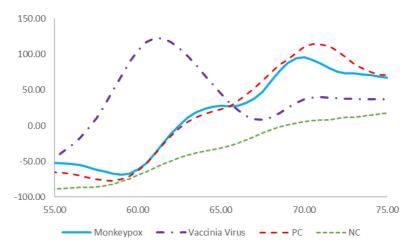


Figure 1: Example for the melting curves of the virellaMonkeypox real time PCR Kit in the FAM channel.

13 Assay Validation

Negative Control

The Negative Control must show no C_T and no T_m in the FAM and HEX channel.

Positive Control

The Positive Control must show a positive (i.e. exponential) amplification curve in the FAM channel. The Positive Control must be below C_T 30. The peak of the melting curve in the FAM channel must be between 68 and 72°C.

Internal Control

The following values for the amplification of the Internal Control are valid using gerbion nucleic acid extraction kit NukEx Mag RNA/DNA. The Control DNA (IPC) must show a positive (i.e. exponential) amplification curve.

The IPC must be below a C_T of 34. If the IPC is above C_T 34 this points to a purification problem or a strong positive sample that can inhibit the IPC. In the latter case, the assay is valid. It is recommended to perform the extraction of a water control in each run. The IPC in the water control must be below a C_T of 34.

If other nucleic acid extraction kits are used, the customer must define own cut offs. In this case the C_T value of the Control DNA (IPC) in an eluate from a sample should not be delayed for more than $4\ C_T$ in comparison to an eluate from an extracted water control.

14 Limitations of the Method

- Strict compliance with the Instruction for Use is required for optimal results.
- Use of this product is limited to personnel specially instructed and trained in the techniques of real time PCR.
- Good laboratory practice is essential for proper performance of this assay.
- All reagents should be closely monitored for impurity and contamination.
 Any suspicious reagents should be discarded.
- This assay must not be used on a biological specimen directly. Appropriate nucleic acid extraction methods have to be conducted prior to using this assay.
- The presence of PCR inhibitors may cause false negative or invalid results.

15 Troubleshooting

The following troubleshooting guide is included to help you with possible problems that may arise when performing a real time PCR. If you have further questions, please do not hesitate to contact our scientists on info@gerbion.com.

No fluorescence signal in the FAM channel of the Positive Control			
The selected channel for analysis does not comply with the protocol	Select the FAM channel for analysis of the Monkeypox virus specific amplification and the HEX channel for the amplification of the Control DNA (IPC).		
Incorrect configuration of the real time PCR	Check your work steps and compare with chapter 'Procedure'.		
The programming of the thermal profile is incorrect	Compare the thermal profile with the protocol in chapter 'Instrument Settings'.		
Incorrect storage conditions for one or more kit components or kit expired	Check the storage conditions and the date of expiry printed on the kit label. If necessary, use a new kit and make sure kit components are stored as described in chapter 'Transport, Storage and Stability'.		

Weak or no signal of the Contr specific FAM channel.	rol DNA (IPC) and simultaneous absence of a signal in the
real time PCR conditions do	Check the real time PCR conditions (chapter 'Real time
not comply with the protocol real time PCR inhibited	PCR'). Make sure that you use an appropriate isolation method
rear time r civ illimoted	(see chapter 'Sample Preparation') and follow the
	manufacturer 's instructions. Make sure that the ethanol- containing washing buffers have been completely removed.
sample material not	Make sure that enough sample material has been applied
sufficient	to the extraction. Use an appropriate isolation method (see chapter 'Sample Preparation') and follow the manufacturer 's instructions.
DNA loss during isolation	In case the Control DNA was added before extraction, the
process	lack of an amplification signal can indicate that the DNA
	isolation was not successful. Make sure that you use an appropriate isolation method (commercial kits are
	recommended) and stick to the manufacturer's protocol.
Incorrect storage conditions	Check the storage conditions and the date of expiry
for one or more components	printed on the kit label. If necessary, use a new kit and
or kit expired	make sure kit components are stored as described in chapter 'Transport, Storage and Stability'.
Detection of a fluorescence sig	gnal in the FAM channel of the Negative Control
Contamination during	Repeat the real time PCR in replicates. If the result is
preparation of the PCR	negative in the repetition, the contamination occurred when the samples were pipetted into the optical PCR
	reaction tubes. Make sure to pipet the Positive Control last
	and close the optical PCR reaction tube immediately after
	adding the sample. If the same result occurs, one or more
	of the kit components might be contaminated. Make sure
	that work space and instruments are decontaminated
	regularly. Use a new kit and repeat the real time PCR.

16 Kit Performance

16.1 Analytical Sensitivity

For the FAM channel the limit of detection (LoD) of virellaMonkeypox real time PCR Kit was determined using serial dilutions of synthetic DNA. The determination of the LoD was done on a CFX Opus 96 (Bio-Rad).

The LoD of virellaMonkeypox real time PCR Kit is \leq 2.5 genome copies per μl for the FAM channel.

16.2 Analytical Specificity

The specificity of the virellaMonkeypox real time PCR Kit was evaluated with different ring trial samples of known status and different other relevant viruses and bacteria found in biological samples and basing on in silico analyses.

The results for the sample analysis are shown in Table 8.

Table 8: Eluted DNA/RNA from bacterial and viral pathogens tested for the determination of the analytical specificity of virellaMonkeypox real time PCR Kit, FAM channel.

	virellaMonkeypox Monkeypox virus
Eluates with known status	
	FAM channel
Adenovirus Typ 1	negative
Herpes Simplex Virus Type 1	negative
Herpes Simplex Virus Type 2	negative
Treponema pallidum	negative
Varizella Zoster Virus Genotyp 3	negative
Streptococcus agalactiae	negative
Enterovirus Coxsackievirus A9	negative
Amplirun® Chlamydia trachomatis DNA Control	negative
Amplirun® Mycoplasma genitalium DNA Control	negative
Amplirun® Neisseria gonorrhoeae DNA Control	negative
Amplirun® Gardnerella vaginalis DNA Control	negative
Amplirun® Trichomonas vaginalis DNA Control	negative
Amplirun® Mycoplasma hominis DNA Control	negative
Amplirun® Ureaplasma parvum DNA Control	negative
Amplirun® Ureaplasma urealyticum DNA Control	negative
Amplirun® Monkeypox Virus DNA Control	positive

16.3 Linear Range

The linear range of the virellaMonkeypox real time PCR Kit was evaluated by analysing logarithmic dilution series of synthetic DNA of the target sequences with both thermal profiles.

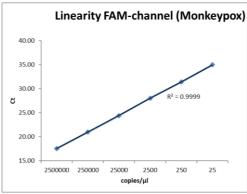


Figure 2: Determination of the linear range of the virellaMonkeypox real time PCR Kit in the FAM channel.

16.4 Precision

The precision of the virellaMonkeypox real time PCR Kit was determined as intra-assay variability, inter-assay variability and inter-lot variability.

Variability data are expressed by standard deviation and coefficient of variation. The data are based on quantification analyses of defined concentrations of Monkeypox virus specific synthetic DNA and on the threshold cycle of the Control DNA (IPC). The results are shown in Table 9.

Monkeypox (FAM)	copies/µl	Standard Deviation	Coefficient of Variation
Intra-Assay Variability	250	0.37	1.16
Inter-Assay Variability	250	0.07	0.23
Inter-Lot Variability	250	0.21	0.67
IPC (HEX)	copies/μl	Standard Deviation	Coefficient of Variation
Intra-Assay Variability	2500	0.17	0.62
Inter-Assay Variability	2500	0.09	0.31
Inter-Lot Variability	2500	0.02	0.07

Table 9: Precision of the virellaMonkeypox real time PCR Kit

17 Abbreviations and Symbols

DNA	Deoxyribonucleic Acid	REF	Catalog number
PCR	Polymerase Chain Reaction	\sum	Contains sufficient for <n> test</n>
REACTION MIX	Reaction Mix	18°C	Upper limit of temperature
CONTROL +	Positive Control	***	Manufacturer
CONTROL —	Negative Control	\subseteq	Use by YYYY-MM-DD
CONTROL DNA IPC	Control DNA (IPC)	LOT	Batch code
CONT	Content	RUO	Research use only
		$\bigcap_{\mathbf{i}}$	Consult Instruction for Use

18 Literature

[1] https://www.who.int/news-room/fact-sheets/detail/monkeypox